/* This is the code that generates the gradient */ /* This is the code that generates the shadow blur */ /* This creates the shadow text */ SM-47 /* This creates the gradient text */ SM-47 /* This creates the shadow text */ T-X /* This creates the gradient text */ T-X /* This creates the shadow text */ /* This creates the gradient text */ /* This is the code that generates the gradient */ /* This is the code that generates the shadow blur */ /* This creates the shadow text */ SM-47 T-X /* This creates the gradient text */ SM-47 T-X
  • Overview

    The SM-47 T-X is a highly maneuverable, single-engine, two-seat tandem, fixed-wing supersonic Advanced Pilot Trainer aircraft. A variant of the SM-47 Super Machete, the SM-47 T-X was conceived specifically to satisfy the requirements of the USAF Advanced Pilot Training (APT) Family of Systems (FoS) aircraft, known also as the T-X.

    Powered by a single GEAE F414 enhanced afterburning turbofan with over 26,000 lbs of thrust at sea level, the SM-47 T-X has digital Power-By-Wire flight controls, canard foreplanes, a distinctive empennage and 9-G maneuverability with full internal fuel. The Forward Swept Wing (FSW) SM-47 T-X will offer a maximum level speed at altitude in excess of Mach 2.2 and a tactical radius on internal fuel of over 700 nm. A dedicated Stavatti solution to the USAF Advanced Pilot Training (APT) Family of Systems (FoS) requirement, the SM-47 T-X is capable of in-flight refueling and meets or exceeds all of the performance and mission requirements as specified in the APT FoS RFP.  Benefiting from an advanced avionics suite with, the SM-47 T-X is a bridge between fourth and fifth generation fighters focused upon performance, maneuverability, maintainability and affordability rather than low observability.

    Stavatti, SM-47, T-X, Advanced Pilot Trainer, Super Machete

    As a supersonic advanced trainer, the SM-47 T-X is competing with the Lockheed Martin/KAI/Samsung T-50, the Boeing T-X, the Leonardo T-100/M-346 and other T-X category aircraft while serving as a potential successor to the T-38 Talon.

    The SM-47 T-X is now under development and will be qualified and certified to MIL-HDBK-516B Airworthiness Certification Criteria in accordance with AFPD 62-6 and AFI 62-601 at the AFFTC, Edwards AFB. The SM-47 will also be certified to applicable FAA type and production certification standards as a fully qualified Day/Night VFR and IFR (VMC/IMC) aircraft. The SM-47 T-X is anticipated to enter production in 2022-2024.

    Accommodation

    The SM-47 T-X cockpit is designed to accommodate a wide spectrum of male and female crewmembers accommodating JPATS Cases 1 through 8 and encompassing the 1st percentile female through the 99th percentile male (NATO) population range. This population range corresponds to crewmembers ranging from 4 ft 10 in/100 lbs through 6 ft 5 in/280 lbs. For planning and engineering development purposes, assumed standard crew-member weight is 260 lbs, including survival equipment.

    In satisfaction of the Advanced Pilot Trainer/Supersonic Trainer role, the SM-47 T-X flight crew consists of a student and instructor seated in tandem (fore and aft crewstations respectively)on Martin Baker MK16E zero/zero ejection seats. Total combined standard SM-47 T-X crewmember weight, including survival equipment, is 520 lbs.

    Powerplant

    The GEAE F414 Enhanced Engine will power the SM-47 T-X, providing over 26,600 lbs of static thrust at sea level. Providing an 18% thrust increase over the F414-GE-400 powers the F/A-18E/F Super Hornet, the Super Machete family benefits from a proven, reliable powerplant with over 900,000 accumulated flight hours worldwide. Featuring a Full Authority Digital Electronic Control (FADEC) and improvements in component materials which allow higher operating temperatures, the F414 benefits from long-chord blisk fan technology. The F414 EE for the SM-47 T-X produces over 26,600 lbs maximum thrust with afterburner and 16,232 lbs maximum military thrust under normal operation. With a mass flow of 187 lbs/sec and a pressure ratio of 30:1, the F414 EE will have a Specific Fuel Consumption (SFC) of 1.81 lb/lbf-hr at maximum afterburner, 0.793 lb/lbf-hr at maximum military and 0.77 to 0.72 lb/lbf-hr at intermediate settings.

    F414, GEAEThe F414 EE has a three stage fan, a seven stage high temperature compressor and a two stage turbine with one low pressure and one high pressure turbine stage. Turbofan airflow is supplied via twin, rectangular, bifurcated fuselage side mounted air intakes which are raked aft 48 degrees. Spaced apart from the fuselage by an integral boundary layer diverter, the air inlets are of fixed, pitot type offering a capture area of 806 sq in for mass flows over 187 lbs/s. Designed for high pressure recoveries through the transonic and low supersonic regimes, the air inlets permit theoretical operations beyond Mach 2.3. To further enhance maneuverability, thrust vectoring may be incorporated into the exhaust nozzle to enhance both pitch and yaw and enable Post Stall Maneuvering. Average engine module EOT life limit is 3,547 hours.

    The SM-47 T-X is equipped with a 142 kW Honeywell 36-150F Auxiliary Power Unit (APU) to facilitate self-starting and to provide ground power.

    Armament

    The SM-47 T-X is unarmed but has provisions for the installation of standard SM-47T fixed internal and expendable, externally carried weapons and stores.

    Avionics & Sensors

    The SM-47 T-X has an Open System Architecture (OSA) with avionics and sensors integrated about a MILSTD-1553B Interface/Data Bus. Featuring a comprehensive avionics and sensors suite, the philosophy driving the SM-47 T-X avionics configuration focuses upon capability, reliability, flexibility and ease of serviceability. Incorporating both avionics designed or modified to meet specific Machete needs as well as proven Military or Commercial Off-The-Shelf systems (MOTS/COTS), the SM-47 offers maximum flexibility to meet specific customer vehicle purpose and mission needs.

    Standard core SM-47 T-X avionics include the Power-By-Wire (PBW) Flight Control System, Air Data Computer, Flight Management System, Avionics Management System, Automatic Flight Direction System, Instrument Landing System, Secure Data Link, Voice/Data Recorder and emergency power supply.

    Building upon the core avionics, to address specific customer needs the SM-47 T-X will be offered with a variety of avionics configurations including a Basic configuration, a Special configuration, a Super configuration and a Deluxe configuration and optional variants thereof. In the Basic configuration, aircraft avionics and sensors are optimized to provide the most cost effective T-X solution while providing the same basic capabilities as T-38C aircraft. In the Deluxe configuration, the SM-47 T-X features AESA radar, comprehensive IFF and other systems for enhanced mission performance equivalent to F-16 and F/A-18 fighters. A Sensor & Avionics summary table for the Basic and Deluxe SM-47 T-X configurations is provided:

    AVIONICS SYSTEMBASICDELUXE OPTION IDELUXE OPTION II
    SENSORS
    Multi-Mode RadarNoneVixen 500E AESAAN/APG-67(V4)
    IRSTNoneAN/AAS-TBDLOCKHEED EOTS
    COMMUNICATION
    VHF/UHF COMMAN/ARC-210(V)AN/ARC-210(V)AN/ARC-232(V) Starblazer
    IFF TransponderNoneAN/APX-100(V)AN/APX-113(V)
    Digital Data Link (Link 16)AN/URC-138AN/URC-138AN/URC-138
    Digital Anti-Jam ReceiverDAR GPS Digital DAR GPS Digital DAR GPS Digital
    Secure Voice SystemTSEC/KY-58TSEC/KY-58TSEC/KY-58
    Intercom System ControlA301-412A301-412A301-412
    NAVIGATION
    Radar AltimeterAPN-194APN-194APN-194
    INS/GPSLN 260LN 260H-764G
    TACANAN/ARN-154(V)AN/ARN-154(V)AN/ARN-153(V)
    ILS/GS/MBAN/ARN-147V AN/ARN-147V AN/ARN-147V
    ADFKR 87KR 87ADF-462/4000
    MISSION MANAGEMENT
    Mission ComputerAMC-TBD 3000 AMCAN/AYQ-25(V)
    Avionics Management System AMS-TBDCMA-2082MCMA-2082M
    Stores Management SystemSMS-TBDSMS-TBDGD AIS SMS
    FLIGHT CONTROL
    Flight Control System4 Channel PBW4 Channel PBW4 Channel PBW
    Automatic Flight Direction SystemDigital Autopilot
    Digital AutopilotDigital Autopilot
    Instrument Landing SystemILS-TBDILS-TBDILS-TBD
    DISPLAYS
    Head Up Display (HUD)Canopy Embedded DisplayCanopy Embedded DisplayNight Hawk or VSI HMDS
    Display ProcessorTBDTBDFV4000 MMDP
    Forward Primary DisplayAD189 20 x 9.5 inAD189 20 x 9.5 inLAAD 20 x 8 in
    Forward Center DisplayAD44 6 x 7.5 inAD44 6 x 7.5 in104P 6 x 8 in
    Forward Secondary DisplaysAD40 6 x 7 inAD40 6 x 7 in104P 6 x 8 in
    Aft Primary DisplayAD329 20.5 x 16.5 inAD329 20.5 x 16.5 inLAAD 20 x 8 in
    Aft Center DisplayAD43 6 x 7.3 inAD43 6 x 7.3 in104P 6 x 8 in
    Aft Secondary Upper DisplaysAD32 6.75 x 5 inAD32 6.75 x 5 in104P 6 x 8 in
    Aft Secondary Lower DisplaysAD46 6.75 x 6.8 inAD46 6.75 x 6.8 in104P 6 x 8 in
    MISSION RECORDING
    Cockpit Voice/Data RecorderFA2100FA2100FA2100
    EMERGENCY POWER
    Emergency Power SupplyPS-855/B PS-855/B PS-855/B

    The Avionics listed in the above summary are identified by system designation or description rather than manufacturer. Many of the avionic systems identified in the above table have been produced under contract by a variety of different manufacturers over the course of their production life, hence avionics are cited by designation rather than specific producer. Avionics that may be provided by multiple vendors, or for whom a specific vendor has not yet been selected as the Stavatti vendor of choice, are identified as TBD rather than by a specific system designation.

    Avionics configurations significantly impact the flyaway cost of individual aircraft. The typical flyaway cost of an SM-47 T-X equipped with Basic sensors and avionics is approximately $25 Million. A Deluxe SM-47 T-X with Vixen 500E or AN/APG-67 radar, integrated IFF and a comprehensive electronic countermeasures suite may have a flyaway cost of $30 Million or more. Potential SM-47 T-X customers are encouraged to discuss APT and/or ADF mission needs with Stavatti to arrive at their optimal SM-47 T-X configuration.

    Stavatti is spearheading the design and development of proprietary next generation avionics and sensors to equip the Machete family as well as other future Stavatti military aircraft. Optimized for Super Machete mission requirements, these new avionic systems will be tested, certified, qualified and introduced into Stavatti airframes over various aircraft production blocks as the systems enter production. One of the first avionic product lines introduced by Stavatti is a proprietary line of cockpit display systems including the Canopy Embedded Display (CED) and Advanced Multi-functional Liquid Crystal Displays (ADs) which offer a significant increase in the available surface area of tactical displays over alternative displays. Additional information regarding these new display systems is provided within the cockpit summary.

    For expanded mission capability, the Super Machete may be equipped with a variety of cost plus optional Electro-Optical Sensors including both airframe mounted sensors as well as externally mounted sensor pod solutions. Electro-Optical targeting systems, including the Lockheed Martin Electro-Optical Targeting System (EOTS) as developed for the F/A-35, providing both forward-looking infrared (FLIR) and infrared search and track (IRST) functionality may be incorporated directly into the aircraft nose section. Externally mounted EO sensor systems, including the SNIPER and LITENING III pods, may be mounted on the SM-47 T-X wing external pylons or upon custom fuselage mounting stations.

    The Machete series of aircraft may be operated as piloted, remotely piloted or unpiloted autonomous air vehicles with the avionic systems necessary for autonomous flight, including hardware and software, being embedded in the foundation of the aircraft’s Automatic Flight Control System. When operating as a piloted aircraft, this pilotless system will augment piloted flight operations by serving as a manually selected “Safety Pilot” to assist in maintaining positive aircraft control in the event of pilot incapacitation or failure of the pilot to recover the aircraft during a departure scenario.

    The cockpit is equipped with a Cockpit Video Recording (CVR) system capable for recording at least 120 minutes of HUD symbology, the external HUD field of view, cockpit LCD MFD symbology and all aircraft communication system audio. The aircraft is also equipped with a crash survivable Flight Data Recorder (FDR) capable of storing the last 90 minutes of flight data for post-crash flight reconstruction. The aircraft is fitted with a Crash Position Indicator (CPI)/Emergency Locator Transmitter (ELT) and a survivable Underwater Locator Beacon (ULB). To reduce electrical system complexity, Data Bus wiring used throughout the system architecture. Halon 1301 will be employed for avionic system fire suppression within sealed avionic bays until a suitable replacement agent is identified and commercially available.

    Electronic Warfare

    As an Advanced Pilot Trainer, the SM-47 T-X is not equipped with an internal Electronic Warfare (EW) suite or Electronic Counter Measures (ECM). The SM-47 T-X may be fitted with a comprehensive EW/ECM suite as desired matching the EW/ECM configurations offered by the SM-47T Super Machete.

    As part of the SM-47 T-X Ground Based Training Solution (GBTS), as well as DACT flight operations, the CUBIC T-X airborne Line Replaceable Unit (LRU), network connectivity, and Advanced Debrief solutions will be integrated into the SM-47 T-X. The Advanced Debrief Solution monitoring and debriefing software application builds on CUBIC’s legacy as the inventor of Air Combat Maneuvering Instrumentation (ACMI). Advanced Debrief Solution was developed through innovation aimed at advanced parametric assessment and visualization techniques, plus the need for easily tailorable and integrated data merging and reporting. Providing connectivity between the ground and the airborne aircraft. The airborne system provides a Software-Defined Radio (SDR) running the 5G ATW for basic operations.

    Cockpit

    The SM-47 T-X features a two seat tandem cockpit arrangement designed for reduced workload operations with crewmembers seated on reclined Martin Baker MK16E zero-zero ejection seats. The cockpit escape system incorporates auto-eject and auto-eject sequencing. The cockpit is pressurized to 8,000 ft and is heated/air-conditioned to enable heating/cooling the aircraft cockpit and avionics bays within outside operational temperature limit range of -55°C to 60°C with solar gain. Crew oxygen is provided by a Cobham/Carlton OC1132 Molecular Sieve Oxygen Generating System (MSOGS).

    The cockpit for SM-47 T-X is a modular unit, produced as a unitized, self contained system external to the fuselage that interfaces with the aircraft through long-life electronic and mechanical connectors. Known as Aluminum Cockpit Modules (ACMs), the cockpits are interchangeable between aircraft models, allowing individual aircraft to be converted to single seat (SM-47S) or two place (SM-47T/T-X) variants as desired. Incorporating distinct, armored and EM hardened quick interconnects for flight controls, electrical junctions, avionics buses and environmental control, the SM-47 cockpit is installed and extracted vertically in the absence of the bubble canopy. The ACMs attach to the fuselage structure through bolts with vibration damping fittings.

    Super Machete, SM-47, Cockpit, Module, StavattiThe ACM is an aluminum foam metal sandwich structure consisting of an aluminum foam sandwiched between aluminum plates. The ACM system for the SM-47 T-X has a total weight of 281 lbs. The cockpit interiors are furnished with aluminum foam metal sandwich consoles, an instrument panel and a panel hood. The panel hood is removable for immediate access to instrument panel avionics and displays while consoles are removable for ease of control panel replacement and update.

    Stavatti, SM-47, Super Machete, CockpitThe aircraft bubble canopy is of large area, frame-less, single-piece clamshell type. The canopy is of advanced bullet resistant polycarbonate composition and can safely sustain the impact of a 4 lb bird at airspeeds exceeding 450 kts from any attitude. Visibility is 350° azimuthal with 13° over-the-nose and 25° over-the-side. The canopy is electromechanically lifted upward for cockpit access. The canopy is defrosted and purged of precipitation using a perimeter high pressure, hot air system tied into the cabin heating and air conditioning system. An internally mounted, manual unlatch and hand-crank is provided.

    The SM-47 T-X benefits from a HOTAS flight controls arrangement consisting of a right hand/starboard mounted Flight Control Grip (F-16 derivative) right console mounted flight control column, full deflection rudder pedals, power control lever (F-16 Grip Derivative). Flight and throttle grips are provided by Esterline/Mason Electric and are based upon current production articles for the F-16 Block 50+ to reduce tooling complexity. HOTAS provides toggles for aircraft flaps, speedbrake, propeller pitch, trim, sensors, weapons release, microphone, etc. Rudder pedals are fully adjustable. Dual flight controls are provided in two-seat variants. All flight controls, displays, instruments, system controls and circuit breakers are accessible from forward and aft crewstations by crew members with crew seat restraints fastened.

    SM-47 T-X cockpit may feature either new design Stavatti proprietary display systems or off-the-shelf display systems. New design Stavatti display systems include a Canopy Embedded Display and Stavatti touch screen Active Displays (AD). Off-the-shelf solutions include Esterline HUDS, VSI HMDS and L3 Displays. The Canopy Embedded Display (CED) is a new Head Up Display (HUD) technology that replaces conventional aircraft HUDs as well as Helmet Mounted Displays (HMDs). The Stavatti CED benefits from pioneering consumer electronics research in the field of transparent, curved LED displays, including Organic Light Emitting Diodes (OLEDs). Applying this technology to aircraft canopies under license from a specific industry partner, the inside of the canopy is layered with a transparent thin film LED which then projects data and symbology, serving as the aircraft’s HUD.

    Providing active visual situational awareness, the CED allows the aircraft’s canopy to serve as a large, wrap-around, transparent display suitable for displaying both menus and HUD symbology as generated by the aircraft’s multi-function display processors. The CED provides visual cuing locations for radar and sensor targets that are yet visually out-of-range while providing both situational awareness and heading cuing for navigational purposes. Also enabling the dimming and blacking-out of the canopy, the CED mitigates solar glare effects, reduces cabin temperature and can provide microsecond dimming to protect pilot vision during nuclear blasts. Serving as a primary visual flight reference display, the CED will deliver greater situational awareness than either HUDs or HMDS at a significantly lower cost. The SM-47 T-X will be equipped with the CED as standard equipment within 36 months of prototype first flight.

    Stavatti touch screen Active Displays (AD) are next generation lightweight LED Multi-Functional Displays of unique trapezoidal configuration. A ruggedized display system engineered to MIL SPEC for operation in extreme environments and under high accelerations, this display technology allows for the production of non-rectangular, large format, cost competitive displays for both military and civil aircraft. Enabling next generation, all glass cockpits, Stavatti’s Active Displays will be produced by a leading military and consumer electronics industry team member for exclusive use in future Stavatti cockpits. Coinciding with the introduction of the CED, SM-47 T-X cockpits will feature these Active Displays as standard equipment within 36 months of prototype first flight.

    Serving as an off-the-shelf alternative to new Stavatti cockpit display technologies, the SM-47 T-X may be equipped with a Esterline Night Hawk wide field-of-view HUD and HUD repeater system as the primary visual flight reference display system. Alternatively, a VSI Integrated HMDS may be used as an alternative to the HUD for the forward crew station. Aircraft equipped with the Night Hawk HUD will employ five L3 Communications Actiview 104P 6 x 8 in LCDs in the forward crew station as secondary flight reference instruments. Aircraft featuring the HMDS will offer three Actiview 104P 6 x 8 displays and one L3 LAAD 20 x 8 display. The aft crewstation of the SM-47 T-X will feature one L3 LAAD 20 x 8 as a primary MFD and three Actiview 104P 6 x 8 displays as secondary displays. All SM-47 cockpits will be IFR certified and designed for Generation III night vision compliance and Helmet Mounted Cuing Systems/Integrated Helmet and Display Sighting Systems (HMCS/IHDSS). Forward and rear panels are complemented by a comprehensive warning annunciator system, integrated air conditioning/heater vents and standby control interfaces.

    Layout drawings of the SM-47 T-X forward and aft crewstations featuring Stavatti display solutions are provided. Layout drawings of cockpits featuring off-the-shelf Night Hawk HUD and L3 Display Systems are available upon request.

    Structure & Materials

    The SM-47 T-X will be an all-metal aircraft featuring semi-monocoque foam metal sandwich construction. Benefiting from a variety of advanced alloys as well as metal forming and joining techniques, the Machete is re-inventing how airplanes are built. As a semi-monocoque aircraft, the SM-47 has external foam metal sandwich skins that are supported by an internal structure of frames, bulkheads, longerons, spars and ribs made from high performance titanium and aluminum lithium alloys. Employing a minimal number of rivets or screw fasteners, the SM-47 T-X is built from sandwich skins that are welded to titanium bulkheads, frames, spars and ribs using Laser or Friction Stir Welding (FSW) techniques.

    Stavatti, SM-47,T-X, Super Machete

    Conceptually similar to aluminum honeycomb sandwich, the foam metal sandwich approach substitutes aluminum honeycomb with a low density metal foam in which a foam metal core is sandwiched between two metal sheets. The foamed metal core will be either titanium foam or aluminum-lithium foam, with face sheets being either aluminum-lithium or titanium. The foam itself will be of either open and closed cell type, depending upon component purpose and application. Offering significant improvements over traditional, semi-monocoque stressed skin aircraft construction, the foam metal sandwich approach builds upon the known advantages of Honeycomb Sandwich structures by adding omnidirectional strength as well as substantial tolerance to ballistic impacts. Recalling the weight saving and cost reducing benefits of full depth Honeycomb sandwich construction cited by F.A. Figge and L. Bernhardt, the Super Machete’s use of foam metal structures results in airframe structures that are inherently stronger, stiffer, lighter and more affordable to produce.

    The closed cell metal foam sandwich structure has an excellent stiffness-to-weight ratio, a greater strength-to-weight ratio than traditional structures and lower thermal conductivity with a high degree of fire resistance. The sandwich construction results in a structure that offers high degree of sound and vibration dampening as well as high impact resistance, fatigue cycle tolerance and superior survivability. Moreover, the closed cell foam structure is conducive to a smooth, low-drag skin-surface that can be produced quickly at a low cost and lower parts count. A new material manufactured by proven and qualified by companies including Fraunhaufer IWU of Chemnitz, Germany, today there are many qualified manufacturers that are producing foam metal sandwich structures for aerospace, defense, automotive, and other applications. Stavatti will be building upon these successes to standardize and qualify a proprietary approach toward the production of foam metal sandwich structures for FAA certified and DoD qualified aircraft.

    The foam metal sandwich approach will feature skins which are 0.032 to 0.25 in thick separated by a low density foamed metal core measuring as thin as 0.5 to 1.0 in to thicknesses over 9 in for full depth wing structures. The foamed metal core is metallurgically bonded to the metal face sheets on a molecular level. This metallurgical bonding is the result of the in-situ bonded proprietary manufacturing approach whereby the core is foamed between solid face sheets, allowing the foam to fuse and form a molecular bond. The face sheets will use 100% density material while the lower density foam core will have a range of material density from 3% to 10% with an average density of 8%, depending on airframe structural component.

    Stavatti, Aluminum Foam Metal Sandwich, Foam Metal Sandwich, Aluminum Foam, Metal Foam, Foam MetalThis foam metal sandwich technology has been utilized by the aerospace industry for over two decades for various applications including, most notably, filtration. Stavatti perceives this technology as a breakthrough that not only increases aircraft structural integrity but allows significant reductions in airframe fabrication time and cost. Dramatically reducing the cost of titanium components this technology will enable the production of all metal aircraft which significantly eclipse any benefit from the use of fiber composites or other materials, particularly from the standpoint of ballistic survivability, fatigue strength improvement and stiffness. Having briefed both the Air Force Research Laboratories (AFRL) and NAVAIR on the foam metal sandwich technology in 2014, Stavatti will qualify both aluminum-lithium and titanium foam metal sandwich structures for military and civil aircraft applications through these organizations as part of the comprehensive SM-47 T-X military qualification process.

    honeycomb sandwich structures as an off-the-shelf substitute for foam metal sandwich skins. These honeycomb sandwich skins would be produced by an industry team member such as Hexcel and fastened by welding or mechanical fasteners to airframe bulkheads, frames, longerons, spars and ribs. These alloy sandwich panels could be used as direct substitutes to foam metal sandwich panels with characteristics that have been well demonstrated. While production aircraft will feature foam metal cores, use of honeycomb cores in prototype aircraft will expedite the development program. Due to their omnidirectional strength, superior impact resistance, survivability and their possible use as pressurized fuel tanks, however, foam metal structures are the desired core material for the SM-47 T-X.

    Stavatti, Stavatti Aerospace, SM-47, Super Machete, T-XTo form foam metal and honeycomb sandwich structures, as well as aircraft sheetmetal into precision contoured fuselage, wing, canard and tail skins, Stavatti will use a combination of aircraft metal forming techniques including laserforming, hydroforming, stretchforming and explosive hydroforming. Specific forming techniques are selected based upon part production quality, production run volume and overall cost. Sandwich structures are either provided to Stavatti as pre-formed components by industry team members or formed in-house. Specific components may be formed prior to creation of sandwich structure wherein motel metal is foamed and cooled to result in a molecularly bonded, foam metal sandwich part. Low radius of curvature parts, including wing and tail skins will likely be stretch formed or stretch formed using laser assistance and then welded to a laser formed foam sandwich. Thick wing and tail structures may be machined from sheet stock to a desired thickness and machined configuration. Aircraft landing gear may also benefit from titanium foam metal construction to reduce component weight. While specific airframe hardware and components may consist of machined aluminum-lithium, titanium and stainless steel, most of the external aircraft surface area will consist of aluminum-lithium and titanium foam metal sandwich structure.

    Beneath the sandwich skins is a spaceframe substructure. Fuselage skins are supported by frames and bulkheads tied together by longerons while lifting structures feature a substructure of spars and ribs. Fuselage longerons are foam metal sandwich structures of formed thin wall rectangular section titanium or aluminum-lithium tubes with aluminum foam cores. Fuselage Bulkheads and frames are machined or built-up laser welded titanium or aluminum lithium structures that are connected as a structural spaceframe by the longerons. Spars are of sine-wave design featuring an I-beam section where horizontal caps are supported by a sine-wave web. Wing, tail and canard ribs are of machined or built up laser welded titanium or aluminum-lithium design with eight wing ribs featuring reinforced trunnion ports for securing of external pylon attachment fittings.

    By weight approximately 94.9% of the SM-47 T-X will be alloy, while 0.1% of the aircraft will be composite and 5.1% of the aircraft will be Polycarbonate and other materials. Of the total structure, 24.9% will be aluminum-lithium, while 11.8% will be aluminum-lithium foam. 52.2% of the aircraft will be titanium with 5.7% of the aircraft being titanium foam. The principal alloys used in the aircraft’s construction are 2090-T83 aluminum-lithium, 2099-T86 aluminum-lithium, Ti-6Al-4V titanium, Ti-6222 titanium, SP700 titanium, PH 15-7 and Ferrium S53. High temperature composites will be used in all bandpass fairings including the radome and conformal antennas. The high temperature composites will employ high temperature resins, including NASA Langley RP46, which can operate for over 10,000 hours at temperatures in excess of 700° F. The fiber materials used in SM-47 T-X composites include a mission specific band pass aramid for use in SM-47 T-X radomes and antenna fairings. To increase aircraft combat survivability and damage tolerance, use of graphite reinforced composites as aircraft skins and primary structures was avoided. A ballistic impact specific formulation of Polycarbonate will be used in the aircraft’s canopy. Sharing the same canopy across all Machete series aircraft, the canopy may be injection molded based upon an approach developed at the AFRL for the low cost production of bird-strike resistant bubble canopies.

    The SM-47 T-X structure is designed for a service life of 15,000 hours at an annual usage of 350 flight hours for a total lifetime of over 43 years. Aircraft design philosophy has emphasized application of Fail-safe design principles with load-path redundancy. Materials used throughout the aircraft exhibit plastic failure modes and maximum resistance to corrosion in all environmental conditions. The aircraft has been designed to a maximum limit load factor of +9.0 G and -4.5 G at a Maximum Takeoff Weight (MTOW) of 36,000 lbs. The maximum limit load factor at Typical Takeoff Weight is is +11.9 G and -5.6 G. The maximum limit load factor at Typical Combat Weight is is +13.6 G and -6.8 G. For all gross weights, the aircraft’s Ultimate load factor is 1.5 times limit load factors.

    Fuselage

    The SM-47 T-X fuselage is a modular, four section structure composed of a nose, center fuselage, aft fuselage and ventral fuselage cannon fairing. All four fuselage modules feature a built-up metal space-frame substructure of frames, bulkheads and longerons with exterior foam metal sandwich skins. Skins are smooth for reduced skin friction drag. Exterior mechanical fasteners are used only for the attachment of removable access panels. Fuselage modules are connected by titanium bolts with quick electrical connectors to allow removal and replacement of modules in the event of significant damage or failure.

    The nose module is 10 ft long with a 7 ft long integrated alloy structure and 3 ft long bandpass composite radome. The radome hinges to the port for radar/avionics access. The nose module contains the aircraft nose landing gear and gear bay, primary radar and sensor bay, primary avionics bay and retractable inflight refueling probe and 20mm cannon structural interface elements (including bulkheads and fairing interface frames). The nose module is insulated, heated and air conditioned to ensure optimal climatic conditions for avionics and sensors. The nose module provides three port, three starboard and one dorsal removable panel for access to aircraft avionics. The nose module structure weighs 327 lbs and has four aluminum-lithium foam metal sandwich longerons, two aluminum-lithium bulkheads, one titanium bulkhead, six aluminum-lithium frames and aluminum-lithium foam metal sandwich exterior skins.

    Stavatti, SM-47, Super Machete, Fuselage Nose

    The center fuselage module is a 13 ft 4 in long and incorporates the 12 ft 4 in long single-piece polycarbonate bubble canopy. The center fuselage houses the crewstation and integrated Aluminum Cockpit Module (ACM), the secondary aircraft avionics bay, electronic warfare systems bay, aircraft OBOGS, 20mm ammunition magazine and ammunition feed and handling systems. The center fuselage has three port and three starboard access panels as well as emergency canopy jettison panels and ground power connection panel. The center fuselage features a retractable, aluminum port fuselage airstair for crew access as well as a canopy open/close actuation panel. The center fuselage also serves as the interface for the aircraft’s pitot air inlets which are mounted externally to the center fuselage consisting primarily of a foam metal sandwich structure with a bulkhead back-plate.

    Stavatti, SM-47, T-X, Advanced Pilot Trainer, Super Machete

    The center fuselage is largely identical for both single seat (S) and two seat tandem (T) aircraft differing only magazine decking skin. The center fuselage contains six bays for installation of avionics, sensors and EW systems. The center fuselage also contains three fuel tanks. The center fuselage module weighs 1,106 lbs for (S) models and 1,092 lbs for (T) models. The center fuselage has six aluminum-lithium foam metal sandwich longerons, eleven titanium bulkheads, twelve aluminum-lithium frames and aluminum lithium foam metal sandwich exterior skins. In addition to providing the spaceframe structure for skin attachment, the bulkheads and frames serve as attachments for canard foreplanes, ACMs and the linear ammunition magazine for the 20mm gun system.

    Stavatti, SM-47, Super MacheteThe aft fuselage module is 16 ft 0 in long with a 7 ft 7 in long ventral cowling for powerplant access. The aft fuselage houses the aircraft F414 powerplant, powerplant engine mount, engine air inlet, engine support systems including battery, APU and self-start equipment, electronic warfare systems, aircraft OBIGGs and the fuselage fuel tanks. Titanium, Kevlar® and Spectra® laminate discrete armor is featured throughout the aft fuselage to enhance powerplant and fuel tank survivability. The aft fuselage serves as the structural interface for the aircraft wings which are bolted to three aft fuselage primary load-bearing bulkheads with spar fittings. The aft fuselage also houses the main landing gear wheels and tires upon retraction and the ventral speedbrake.

    SM-47, Stavatti, Super MacheteThe aft fuselage weighs 1,273 lbs and is composed of ten aluminum-lithium foam metal sandwich longerons, ten titanium bulkheads and frames including three titanium wing spar attachment bulkheads, three titanium bulkheads with integral engine mounts, eleven aluminum-lithium frames, one aluminum-lithium landing gear bay keel bulkhead and aluminum-lithium foam metal sandwich skins. Titanium foam metal sandwich skins may be used in high temperature regions. The ventral speed-brake is an aluminum-lithium foam metal sandwich structure with an electromechanical actuator attached to a stressed skin speed-brake bay reinforced with six I-section aluminum-lithium stringers.

    Stavatti, SM-47, Super MacheteEach fuselage module is an independent, integrated unit that contain all necessary control linkages, control systems, electrical wiring and harnesses, fuel lines specific to the module as integrated systems, interfacing with the other modules through reusable connectors. Designed for mission expansion, the fuselage offers significant unpopulated volume for future avionics, sensor and electronic warfare systems growth. The alloy spaceframe is a laser welded and built-up structure which serves as a rigid chassis for the integration of all alloy frames, primary bulkheads, mounts and the firewall. All fuselage contained systems, including avionics, electrical, armament hydraulic and the ACM, are secured to spaceframe integrated alloy mounts. The spaceframe is skinned in an alloy film to ensure all sensitive avionic and electrical systems are protected to applicable TEMPEST requirements.

    Wings

    SM-47 T-X wings are of forward swept, low aspect ratio, low-wing, cantilever type. Principal leading edge sweep is -35° and trailing edge sweep is -53.8°. Wing span, excluding missile launch rails is 32 ft 2 in. Overall wingspan is 33 ft 4 in over launch rails. Reference wing area is 278 sq ft. Wing aspect ratio is 3.74. The wing airfoil is a modified NACA 64A204 throughout the span.. Wing incidence is 0°. Wing dihedral, from root, is 0°. The wing is 82.5% titanium and 17.5% titanium foam metal by weight. Each wing weighs 998 lbs for a total wing weight of 1,996 lbs.

    The SM-47 T-X wing is composed of a port and a starboard wing. Each wing is mounted to the aircraft fuselage by spar attachment fittings that bolt to fuselage bulkheads. Wings may be removed from fuselage for transport, repair or replacement. Each individual wing features two segments including an inboard section and an outboard section. Each inboard wing section has a leading edge sweep of 35° degrees and features a single trailing edge flapperon/elevon. Each outboard wing section has a leading edge sweep of 35° The outboard wings may feature a folding wing section with a hinge break between the flapperon gap to enable storage on USN carriers.

    Stavatti, SM-47, Super MacheteEach wing has four titanium sine wave spars which form the basis of a rigid titanium carry-through box. This carry-through box serves as mount and housing for the main landing gear. The carry-through box is also the principal mount for port and starboard titanium monocoque empennage support booms which serve as the structural interface for the vertical and horizontal stabilizers. Each wing has seven titanium ribs including three inboard ribs and four outboard ribs. Four of the ribs feature external hardpoint trunnion mounting fittings. Wings feature full-depth titanium foam metal cores as well as full-depth titanium foam metal fuel cell cores. The fuel cell cores are porous, open cell titanium foam metal cores that serve as integral fuel tanks. These foam metal fuel tanks aid in reducing the chance of fuel ignition or explosion and allow for pressurization with inert gas. Wing foam core fuel tanks have a total capacity of 95 USG per wing. Each wing features milled titanium skins that are laser welded to the spar and rib substructure and molecularly bonded to the foam core. All wing structures and components are either fastened by computer directed laser welding or by titanium screws and bolts. A foam metal sandwich structure, SM-47 T-X wings are stronger and lighter than conventional semi-monocoque wings and have sufficient stiffness as to prevent aeroelastic divergence and failure of the forward swept wing

    Stavatti, SM-47, Super Machete, Multi-Role FighterEach wing section is equipped with 0.28c flapperons ailerons for roll control and to serve as trailing edge flaps for low speed handling The inboard wing center section is also equipped with a trailing edge elevon which may function as an elevator, aileron or plain flap to enhance pitch, roll or low speed control. Each wing section is also equipped with leading edge flap for enhanced low speed/high AoA performance. The slat is split at the aileron junction located at the 74% span. The split flaps may be deployed differentially allowing the ailerons to receive accelerated flow to prolong the onset of tip stall. The split flaps also enable the folding of outboard wing sections for carrier stowage. Working in conjunction, the wing leading edge flaps and trailing edge flaps serve as a flight computer programmable variable camber wing section. Flapperons, leading edge flaps and speed-brakes are of titanium foam metal sandwich construction. SM- 47S/T Wingtips are equipped with a LAU-129 missile launch rail.

    Wings are equipped with an Electro-Expulsive Separation System (EESS) for in-flight deicing. Wings have eight external hardpoints, with three hardpoints located on each outer wing section and two canted hardpoints located on the wing center section fitted directly to the empennage support boom. Four hardpoints are rated to 2,500 lbs at +9.0 G. The outer section hardpoints are each rated to 1,000 lbs at +9.0 G. The two remaining outer wing hardpoints are rated to 500 lbs at +9.0 G. Four hardpoints are plumbed for external fuel tanks. Standard external tanks include the Cobham (Sargent Fletcher) #401315 150 USG Tank and the Cobham #74A551200-1001 330 USG Tank.

    Canards

    The aircraft canards are fixed, close-coupled cantilever type. Canards enhance aircraft low speed handling, maneuvering and short field performance through the generation of high energy vortices. Leading edge canard sweep is 55.0° and trailing edge sweep is 34.1°. Canard dihedral is 0°. Canard unit span is 4 ft 0 in. Total canard area and aspect ratio is 30.0 sq ft and 1.07 respectively. Canard mean airfoil is a NACA 65A004 section.

    Stavatti, SM-47, Super Machete, CanardsThe canards are of all-metal construction with an individual unit weight of 68.5 lbs for a total canard weight of 137 lbs. The canards feature two sine wave aluminum-lithium spars, full-depth aluminum lithium foam metal cores and aluminum-lithium skins. The canards are of all moving slap design and operate collectively with the all moving horizontal stabilizer to enhance pitch rate or differentially when the aircraft is functioning as a Control Configured Vehicle. The canards may also be deflected in unison to serve as an aircraft speedbrake.

    Empennage

    The SM-47 T-X empennage consists of twin all-moving, mass balanced horizontal stabilizer for longitudinal stability and pitch control and twin vertical stabilizers. The empennage is close-coupled to the aircraft wing to improve instantaneous maneuverability and reduce aircraft physical dimensions. The empennage is attached through wing mounted support booms. The empennage is equipped with in-flight deicing.

    The SM-47 T-X horizontal stabilizer has a trapezoidal planform with a leading edge sweep of 35° and trailing edge sweep of 32.6°. Horizontal tail unit span is 9.5 ft. Horizontal tail unit area is 56.9 sq ft. Total horizontal tail area and aspect ratio is 113.77 sq ft and 1.59 respectively. Horizontal tail mean airfoil is a modified NACA 65A004 section. Each individual horizontal stabilizer weighs 259.6 lbs for a total horizontal tail weight of 519 lbs. The horizontal tail is of all metal construction with 71% being aluminum-lithium and 29% being aluminum lithium foam metal. The horizontal stabilizer has two aluminum-lithium primary spars, four aluminum-lithium secondary spars, three aluminum-lithium ribs and a foam metal sandwich structure including aluminum-lithium skins molecularly bonded to in-situ formed full-depth aluminum lithium foam metal cores. The horizontal tails can be deflected collectively for pitch control or differentially for role control with a maximum deflection angle of +/- 40°.

    Stavatti, SM-47, Super Machete, Horizontal StabilizerThe SM-47 T-X vertical stabilizer consists of two independent units of trapezoidal planform. Vertical stabilizer leading edge sweep is 40°and trailing edge sweep is 11.3°. With an overall span of 6 ft 5 in, each vertical tail has 39.81 sq ft of area including the dorsal fin. Vertical tail reference area is 39.81 sq ft with a corresponding aspect ratio of 1.06. Total aircraft vertical stabilizer reference area is 79.63 sq ft. With a dihedral angle of 20°, the vertical stabilizer’s mean airfoil is a modified NACA 65A004. Each vertical stabilizer assembly has a weight of 181.3 lbs including rudder for a total aircraft vertical tail weight of 362.6 lbs. The vertical tail is 70% aluminum-lithium and 47% aluminum-lithium foam metalThe vertical tail has three aluminum-lithium spars, four aluminum-lithium ribs, full-depth aluminum-lithium foam cores and aluminum-lithium skins. Each vertical stabilizer features an aluminum rudder with aluminum-lithium skins and a full-depth aluminum-lithium foam metal core. Rudders incorporate trim tabs and are capable of deflection angles of +/- 35°. Each vertical tail has a Kevlar® composite antenna fairing skins for vertical tail mounted antennas, EW and RWR.

    Stavatti, SM-47, Super Machete, Vertical StabilizerThe SM-47 T-X has twin empennage support booms each located 72 inches from the aircraft centerline. With a length of 18 ft 0 in, a typical width of 14.25 in and a typical height of 14.0 in, each individual support boom serves as a mounting point for one vertical stabilizer, one horizontal stabilizer unit and one ventral fin. Each support boom weighs 282.2 lbs and is composed of 86% titanium and 14% titanium foam metal.

    Stavatti, SM-47, Super MacheteTotal weight of all aircraft support booms is 564 lbs. Each support boom is composed of a titanium foam metal sandwich skin that is supported internally by twenty-one titanium frames and one titanium horizontal stabilizer trunnion yoke. Each support boom also features one external hardpoint mounting trunnion with each individual boom serving as the mounting point for one canted external stores pylon. Each support boom is typically fitted with four ventrally mounted AN/ALE-47 countermeasures dispensers for a total of eight aircraft dispensers. These countermeasures dispensers may be removed from T-X aircraft or left installed for DACT training purposes. The support booms may be modified to serve as interfaces for electro-optical sensors as well as towed decoy dispensers. A tail light may be mounted to the end of the right support boom.

    Fuel System

    The SM-47 T-X fuel system fuel system is composed of nine rigid fuel tanks and one feeder tank. Five of the fuel tanks are located within the fuselage, while the remaining four tanks are located within the port and starboard wing respectively. For increased survivability the fuel tanks are pressurized with a Cobham NC1029 OBIGGS. The maximum useful internal fuel load is 896 US Gallons equivalent to 5,821 lbs of JP-4, 6,090 lbs of JP-5 and 6,000 lbs of JP-8 at standard conditions. SM-47 T-X fuel tanks are sized for a maximum capacity of 896 useable gallons of JP-4, resulting in a total volumetric capacity of 901 gallons plus any volume necessary for fuel tank self-sealing features. Unusable internal fuel is approximately 70 lbs. A fuel quantities and tank arrangement diagram for the SM-47 T-X is  provided:

    Fuselage fuel tanks are of rigid, titanium type fitted lined with open cell reticulated foam as secondary survivability protection in addition to the OBIGGS. Wing fuel tanks are of open cell titanium foam metal type and serve as both a structural core as well as a sealed fuel cell. The inboard wing fuel tanks feature three cells while the outboard wing tank consists of twelve cells as defined by spars and ribs. A single point refueling interface is located on the port fuselage, while gravity refueling may be accomplished through three filler locations including one on each wing and a single fuselage point.

    A probe-and drogue in-flight refueling system is located in the aircraft nose. The refueling probe for the in-flight refueling system is of retractable type based upon technologies developed by Cobham (Sargent Fletcher) in their ART/S Aerial Refueling Tank System. The retractable refueling probe system will likely be produced by Cobham. A flying-boom style Universal Aerial Refueling Receptacle Slipaway Installation (UARRSI) may be mounted on the centerline dorsal fuselage aft of the cockpit to enable KC-135/KC-46 inflight refueling. To extend aircraft range four wing hardpoints are plumbed for external fuel tanks. The SM-47 T-X may carry up to four Cobham/Sargent Fletcher P/N 401315 external fuel tanks with a maximum capacity of 150 USG for up to 4,020 lbs of additional JP-8 Fuel. The Cobham 330 USG external tank may also be carried.

    Aircraft Systems

    SM-47 T-X Aircraft Systems include flight controls, electromechanical systems, electrohydrostatic systems, hydraulic systems and the electrical system.

    The SM-47 T-X flight control system is a full-authority, Digital Power-By-Wire (PBW) flight control system. The PBW system features self-contained electrohydrostatic primary flight control actuators (EHAs), electromechanical actuators (EMAs) and electrically driven power drive units (PDUs). EHAs and EMAs are developed and produced by leading industry team members including Moog, Parker Aerospace and Beaver Aerospace. EHAs and EMAs position and actuate the aircraft’s flapperons, slats, rudders, stabilators, elevons, canopy, air stair, landing gear, landing gear doors, in-flight refueling doors, speedbrake and 20mm cannon system.

    SM-47 T-X EHAs enable flight control and systems actuation without the need for a central hydraulic system, resulting in reduced aircraft weight, more efficient power consumption and improved aircraft maintainability. The EHAs consist of an integral fixed displacement reversible high speed pumps driven by a brushless electric motors. The EHAs are dual tandem designs with simplex hydraulic output that incorporate both fail-safe features and overload protection. The EHAs have operating pressures up to 5,000 psi with an electrical output range of 270 Vdc or 115 VAC with a transformer rectifier.

    SM-47 T-X EMAs include both linear and rotary electromechanical actuators that utilize a ball or Acme screw driven by brushless electric motors through a torque sum gear train. The EMAs my have a skewed roller or a fail-safe electromechanical brake. Linear or rotary variable differential transformers determine position of flight control surfaces actuated by the EMA. In the event of primary load path failure, the EMA’s primary load path is locked in place and load is transferred to a secondary load path.

    The PBW system is quad-redundant, features BIT and benefits from flight control laws that enable variable stability and provide the pilot with maximum flight control authority enabling the aircraft to be fully aerobatic. PBW flight control law software allows the aircraft to perform all standard maneuvers including the stall, slip and spin, enabling full expression of exercises throughout any advanced training syllabus. The PBW architecture interfaces directly with pilotless remote piloted and autonomous flight command systems. Flaperons, rudders and stabilators are internally mass balanced. Stabilators feature electric trim, actuators that are located in the support boom. Flight control surfaces may be deflected in concert or independently to enable unique flight control deflections and resulting aircraft maneuvers as controlled by the aircraft flight control system. Flight crews may pre-program specific maneuvers for precision execution by the aircraft flight control system.

    The SM-47 T-X features two independent 4,000 psi (276 bar) hydraulic systems driven by electrically driven pump. Hydraulic systems are interconnected. Hydraulic systems actuate landing gear normal braking, and nose wheel steering. Hydraulic pressure is maintained automatically and is suitable for aerobatics and inverted flight.

    The SM-47 T-X electrical system supplies 115 volt, three-phase, 400 cycle AC power and 28 VDC per MILSTD-704D. Four independent sources are used for power generation including a primary switchedreluctance starter/generator, a Honeywell 36-150F APU, a RAM air turbine and a battery. AC power is supplied by two static inverters. Power is normally supplied by one inverter with the second serving as a backup. DC power is supplied by one 24 VDC battery. The starter/generator is a combination engine starter and 28 VDC generator. The secondary generator is a 28 VDC generator. The aircraft features an APU to supply DC and 400 Hz power, bleed air/air conditioning and hydraulic pressure. An external 28 VDC ground power connector is provided.

    The aircraft is equipped with Cobham OC1132 OBOGS and a NC1029 OBIGGS. The cockpit is pressurized, air conditioned and heated. The aircraft will feature an Electro-Expulsive De-icing System (EEDS) as developed by NASA and produced by IMS-ESS. EEDS is used for wing leading edge, canard leading edge, horizontal stabilizer leading edge and vertical stabilizer leading edge deicing. Electric deicing is used in the pitot tube, static ports, AoA transmitter, stall warning sensor and air intakes. Powerplant bleed air deicing is provided for the canopy and engine inlet. A fire detection and suppression system is provided for the engine, avionics bay and cannon/ammunition bay.

    Landing Gear

    The SM-47 T-X has electromechanically actuated, retractable tricycle landing gear. The landing gear is designed for operations from unprepared, forward locations with sink rates up to 15 ft/s, with a high tolerance to hard landings. Landing gear struts are of SP 700 Titanium and Ferrium S53 construction. Maximum landing gear deployment airspeed is 250 Kts. Machete wheelbase is 16 ft 5 in. SM-47 T-X wheel track is 12 ft 0 in. Landing gear weight distribution is 15/85 at MTOW. Maximum tip-back angle is 15°.

    The main landing gear is of wing mounted, single-strut, oelo-pneumatic, single wheel units featuring hydraulic carbon disk brakes. Main wheels use 25.5 x 8.0-14 size tires including Goodyear 20 ply rib tread with a maximum inflation pressure of 310 psi. The main gear retracts 90°inboard, with wheels stowed in the wing center section carry-through box upon retraction. Retraction is provided by a single self-locking electromechanical actuator. In the event of actuator failure, the gear extends and locks in the extended position. Each main gear strut may feature a single landing light.

    The nose landing gear retracts forward and is an oelo-pneumatic, single wheeled unit. The nose wheel uses 19 x 6.75-8 size tires including 10 TL ply, Goodyear Rib tread with a maximum inflation pressure of 110 psi. Nose wheel steering and main gear braking, is provided via rudder pedal inputs. Electromechanically actuated, the nose gear drops and is locked in the extended position in the event of actuator failure. The nose strut features a taxi light that steers with the nose wheel.

    Qualification

    The SM-47 T-X Super Machete will be qualified to MIL-HDBK-516B Airworthiness Certification Criteria in accordance with AFPD 62-6 and AFI 62-601. The SM-47 T-X will also be relevant FAA Type certified for day/night VFR/IFR operations in the the Normal, Utility and Aerobatic Categories. The SM-47 T-X manufacturing process and production line will be FAA Production Certified. The SM-47 T-X will be certified for, single pilot IFR operations and to fly in known icing conditions. The SM-47 T-X will have a certified flight envelope cleared for stalls, spins, aileron rolls, barrel rolls, Chandelles, Cloverleafs, Cuban Eights, Immelmans, Lazy-Eights, Split-S and additional maneuvers.

    The SM-47 T-X will be properly certified/qualified to meet acquisition requirements for service as a USAF/USN/USMC weapon system. The SM-47 T-X will be qualified to allow for U.S. Allied/Mentor operation. The SM-47 T-X will be flight tested at the USAF AFFTC at Edwards AFB and other qualified test centers.

    Operational Costs

    The SM-47 T-X will have an operational Cost Per Flight Hour (CPFH) of approximately $4,566 per hour, including an aircrew cost of $1,174 per hour and a fuel cost of $1,053 per hour. The CPFH estimates assume an annual utilization rate of 350 FH/PAA. Stavatti projects SM-47 T-X MTBF to be 7.91 Hours with 9.12 MMH/FH.

    The SM-47 T-X has been designed for an operational service life of 15,000 hours, accumulating an average of 350 hours per annum. Aircraft fatigue life will be based upon 30,000 takeoffs and landings (cycles). The aircraft maximum design load factor limit is +9.0G and -4.5G at Maximum Gross Takeoff Weight (MTOW) with maximum external stores and full internal fuel (6,000 lbs).

    Designed for operation from austere, unprepared locations and semi-prepared surfaces, the SM-47 T-X is designed for operation in arid, desert, tropical, arctic and sea-salt environments and is capable of functioning without reduction in mission capable rates in -25°C to 55°C environments. The SM-47 T-X will be equipped and FAA certified for single-pilot day/night IFR operations. The SM-47 T-X will be able to operate in ground conditions from -25°C to 55°C and in flight conditions from -55°C to 60°C

  • Performance & Specifications

    MODEL

    SM-47 T-X

    TYPE

    Advanced Pilot Trainer (APT/T-X) and Supersonic Trainer (ST)

    ACCOMMODATION

    Flight Crew of Two Seated in Tandem on Martin Baker MK16E Zero-Zero Ejection Seats

    POWERPLANT

    One (1) General Electric Aircraft Engines F414 Enhanced Afterburning Turbofan delivering 26,600 lbs st with Afterburner and 16,232 lbs st at Military Power. The powerplant may be fitted with a thrust vectoring nozzle.

    STRUCTURE

    Semi-monocoque aluminum and titanium foam metal sandwich construction throughout with multiple sine-wave spars in the cantilever wings and empennage.

    ARMAMENT

    Fixed: None; Has provisions for one nose mounted M61A2 20mm gatling cannon with 1,000 rds
    Expendable: None; Has provisions for up to Eight external wing hardpoints for up to 12,000 lbs of external stores

    DIMENSIONS

    Wingspan33 ft 4 in
    Length Overall42 ft 0 in
    Height Overall12 ft 4 in
    Wing Area 308 sq ft
    Wheelbase16 ft 6 in
    Wheeltrack12 ft 0 in

    WEIGHTS & CAPACITIES

    Empty Weight14,900 lbs
    Max Internal Fuel6,000 lbs
    Max Warload0 lbs
    Mid Mission Weight (MMW)18,500 lbs
    Max Take-Off Weight (MTOW)21,500 lbs

    PERFORMANCE

    Max Level Speed @ SL1.23 Mach
    Max Level Speed @ 15,000 ft1.60 Mach
    Max Level Speed @ 35,000 ft2.27 Mach
    Max Supercruise @ 15,000 ft1.00 Mach
    Max Supercruise @ 35,000 ft1.00 Mach
    Typical Cruise @ 25,000 ft0.85 Mach
    Typical Cruise @ 35,000 ft0.85 Mach
    Typical Approach Speed @ SL127 KTAS
    Typical Landing Stall Speed @ SL106 KTAS
    Max Initial Rate-of Climb @ SL47,700 ft/min
    Max Speed Range, Internal Fuel189 nm
    Max Speed Radius, Internal Fuel85 nm
    Supercruise Range, Internal Fuel864 nm
    Supercruise Radius, Internal Fuel420 nm
    0.85 Mach Cruise Range, Internal Fuel1359 nm
    0.85 Mach Cruise Radius, Internal Fuel661 nm
    0.85 Mach Ferry Range, 2 x 330 Tanks1,907 nm
    Takeoff Ground Roll, Takeoff Weight962 ft
    Landing Ground Roll, Landing Weight1,829 ft
    Service Ceiling Exceeds55,000 ft

    Performance & Specifications

    MODEL

    SM-47T

    TYPE

    Air Defense Fighter (ADF), Strike Fighter (SF) and Type Specific Trainer (TST)

    ACCOMMODATION

    Flight Crew of Two Seated in Tandem on Martin Baker MK16E Zero-Zero Ejection Seats

    POWERPLANT

    One (1) General Electric Aircraft Engines F414 Enhanced Afterburning Turbofan delivering 26,600 lbs st with Afterburner and 16,232 lbs st at Military Power. The powerplant may be fitted with a thrust vectoring nozzle.

    STRUCTURE

    Semi-monocoque aluminum and titanium foam metal sandwich construction throughout with multiple sine-wave spars in the cantilever wings and empennage.

    ARMAMENT

    Fixed: One Nose mounted General Dynamics six barrel M61A2 20mm gatling cannon with 1,000 rds
    Expendable: Eight external wing hardpoints for carriage of up to 12,000 lbs of external stores

    DIMENSIONS

    Wingspan33 ft 4 in
    Length Overall42 ft 0 in
    Height Overall12 ft 4 in
    Wing Area 308 sq ft
    Wheelbase16 ft 6 in
    Wheeltrack12 ft 0 in

    WEIGHTS & CAPACITIES

    Empty Weight16,770 lbs
    Max Internal Fuel6,000 lbs
    Max Warload12,000 lbs
    Mid Mission Weight (MMW)24,200 lbs
    Max Take-Off Weight (MTOW)36,000 lbs

    PERFORMANCE

    Max Level Speed @ SL1.23 Mach
    Max Level Speed @ 15,000 ft1.60 Mach
    Max Level Speed @ 35,000 ft2.27 Mach
    Max Supercruise @ 15,000 ft1.00 Mach
    Max Supercruise @ 35,000 ft1.00 Mach
    Typical Cruise @ 25,000 ft0.85 Mach
    Typical Cruise @ 35,000 ft0.85 Mach
    Typical Approach Speed @ SL136 KTAS
    Typical Landing Stall Speed @ SL113 KTAS
    Max Initial Rate-of Climb @ SL47,700 ft/min
    Max Speed Range, Internal Fuel185 nm
    Max Speed Radius, Internal Fuel83 nm
    Supercruise Range, Internal Fuel756 nm
    Supercruise Radius, Internal Fuel367 nm
    0.85 Mach Cruise Range, Internal Fuel1,132 nm
    0.85 Mach Cruise Radius, Internal Fuel550 nm
    0.85 Mach Ferry Range, 2 x 330 Tanks1,821 nm
    Takeoff Ground Roll, Takeoff Weight1,575 ft
    Landing Ground Roll, Landing Weight2,072 ft
    Service Ceiling Exceeds55,000 ft
  • Drawings

    SM-47 T-X Ventral Three-View

    SM-47 T-X Ventral Three-View With Pylons

    SM-47 T-X Three-View With Ordnance

    SM-47 T-X Ventral Three-View With Ordnance

    SM-47 T-X Isometric

    SM-47 T-X Armed Isometric

  • Cost

    The SM-47 T-X is now under development and is not currently in production. Upon entering production, the Per Unit Flyaway Cost (Flyaway Cost) of SM-47 T-X Super Machete aircraft will be dependent upon the specific model, model block configuration, customer selected weapon system sensor-avionics-instrumentation-electronic warfare-armament systems package, and all related support equipment specific to an individual aircraft, not including fixed or expendable external stores (external or drop tanks, ordinance, pods and pylons), spares or ground support equipment.

    Based upon a Standard Weapon System Configuration (SWSC) developed for each member of the SM-27/47 family in support of the marketing and export of aircraft to NATO allied air defense forces, a Rough Order of Magnitude (ROM) Per Unit Flyaway Cost range and associated Median Cost has been projected for each Machete model. Projected ROM Flyaway Costs for Block 10, Low Rate Initial Production (LRIP) SM-47 T-X aircraft of SWSC, in 2017 United States Dollars (USD), are as provided. All projected ROM costs herein provided are approximate estimations issued to assist potential procurement bodies for future force budgetary planning only. Projected ROM costs are not contractually binding:

    SM-47 T-XCONFIGURATIONFLYAWAY COST*
    Basic:$20,000,000
    Special:$23,000,000
    Super:$26,000,000
    Deluxe:$30,000,000
    *Costs are in CY2017 United States Dollars/Federal Reserve Notes (USD FeRNs)

    As indicated, the Per Unit Flyaway Cost (Flyaway Cost) of SM-47 T-X aircraft will be between approximately $20,000,000 (twenty million) and $30,000,000 (thirty million) United States Dollars (USD), depending upon specific model and configuration.

    These ROM, approximate Flyaway Costs apply to one (1) basic Super Machete platform (Stavatti Model 47 T-X) of Standard Weapon System Configuration (SWSC). In an effort to simplify the marketing and distribution of the Machete weapon system worldwide, Stavatti has developed the SWSC. The SM-47 T-X SWSC represents a common SM-47 T-X configuration which is readily suitable for mass production and expedient delivery to the customer. Stavatti customers will be able to purchase SM-47 T-X SWSC aircraft at a specified flyaway cost plus applicable duties and export/delivery expenses.

    SM-47 T-X SWSCs are specified within the SM-47 T-X Configuration Control Statement (CCS) document as issued by STAVATTI MILITARY AEROSPACE for specific Super Machete models as appropriately configured for specific domestic and allied customers. Contact STAVATTI or visit Super Machete Product Literature for a copy of an appropriate CCS. A portion of the avionics, displays, armament and related systems associated with the SM-47 T-X SWSC are also indicated in the Super Machete Specifications page of this website. The following support documentation, options, equipment and material is also included with each SM-47 T-X of SWSC:

    U.S. Standard Airworthiness Certificate, Export Certificate of Airworthiness, Weight and Balance Data Sheets/Weight and Balance Plotter, Aircraft/Engine/Armament System Log Books, Abbreviated Checklist, Flight Manual, Pilot‘s Operating Manual, Avionics Wiring Diagrams, Hydromechanical Systems Manual, Maintenance Manual (Airframe), Illustrated Parts Catalog (Airframe), Wiring Diagram Manual (Airframe), Weight and Balance Manual, ADF Air Combat Manual, Strike Air Combat Manual, Special Combat Operations Manual, Advanced Training Instructional Manual (SM-47T), Component Maintenance Manual, Structural Repair Manual, System Control Code Programmers Manual, Illustrated Tool and Equipment Manual, Nondestructive Inspection Manual, Engine Maintenance Manuals, Engine Illustrated Parts Catalogs, Parts Warranty Listing, additional miscellaneous information concerning engine, airframe, avionics and armament support, Aircraft Tie-Down Kit (including tie-down anchors and cable, wheel chocks, control locks, pitot-static port covers, etc.), Aircraft Full Canopy Sunshade/Cover, Basic Aircraft Tool Kit, Aircraft Emergency Survival Kit, HGU-86/P pilot flight helmet and accompanying flight/anti-g suit of customer specified sizing (Note: SM-47T aircraft include two helmets and anti-g suits), 24 hours of Stavatti provided SM-47 operational ground schooling/orientation for one flight officer, 24 hours of Stavatti provided SM-47 maintenance and service ground schooling/orientation for one maintenance officer, 5 hours of SM-47 orientation flying in a Stavatti owned and operated SM-47 for one flight officer, Custom Paint Scheme consisting of up to 10 base colors and up to 25 trim colors as well livery/noseart, 1,000 or 500 (model dependent) rounds of installed 20 mm ammunition for M61A2 cannon or appropriate rounds for alternate fixed armament, Full Fuel consisting of 7,250 lbs of JP-8 installed in aircraft, additional equipment and a 2,000-Hour ‘Nose-to-Nozzle’ Manufacturer’s Warranty.

    All publications, documents and manuals will be provided in both hardcopy bound print as well as CD-ROM and Aerofiche format. In addition to documentation supplied by Stavatti Military Aerospace, additional documentation may be provided detailing the operation/maintenance of specific aircraft systems by specific aircraft system manufacturers. Stavatti will provide Service Bulletins, Service Letters, Air Worthiness Directorates and manual revisions for the duration of aircraft operational service life.

    The Flyaway Cost of the SM-47 T-X does not include the cost of any spares, external stores/armament, or other logistical support that may be associated with a weapon system procurement contract. The additional costs associated with the provision of spares, external stores/armament, Contractor Logistical Support or any other indicative cost options, maybe provided by Stavatti. All Flyaway Cost data provided herein is not contractually binding and are conceptual in nature.

    The noted Flyaway Costs only apply to the SM-47 T-X of SWSC. The SM-47 T-X SWSC does not represent aircraft configured to satisfy specific customer requirements. Stavatti desires to satisfy all customer needs and requirements. In so doing, the SM-47 T-X will employ open avionics and systems architecture allowing the SM-47 T-X platform to employ a wide variety of avionics, armament and sensor systems. Customers are invited to procure aircraft which employ customized systems configurations, as specially developed by Stavatti. The Flyaway Cost of SM-47 T-X aircraft of customized configuration will be dependent upon the systems specified and is determined only upon assessment of the specific configuration. Generally, the Flyaway Cost of SM-47 T-X aircraft as projected will fall between $20 million and $30 million dependent upon ultimate configuration.

    AVAILABILITY

    The SM-47 T-X Super Machete series of aircraft is currently under development by Stavatti Military Aerospace-Tactical Air Warfare Systems Division. The SM-47 T-X is not presently in production and is not available for procurement at this time. Stavatti is receiving orders for the SM-47 T-X at the present time, hence initial production aircraft will be produced in satisfaction of backlog orders. As of First Quarter 2017, the estimated time-frames for initiation of Low Rate Initial Production (LRIP), Initial Operational Capability (IOC) within end-user air defense arms and Full Rate Production (FRP) are as projected:

    SM-47 T-X PROGRAM PHASETIME-FRAME*
    LRIP:2022-2023
    IOC:2023-2024
    FRP:2023-

    Stavatti reserves the right to adjust, modify, expedite, cancel or otherwise enhance the projected dates for SM-47 T-X Super Machete series LRIP, IOC or FRP at our discretion. All program phase time-frame estimates are for the benefit of future force program budget planners and are non-contractually binding.

    Generally speaking, Stavatti projects the SM-47 T-X will be available for initial delivery to most qualified customers in the 2022-2024 time frame, back-logs not withstanding. Prior to entering Full Rate Production (FRP), the SM-47 T-X must complete a comprehensive RDT&E program, followed by twelve (12) to twenty-four (24) months of Low Rate Initial Production (LRIP). The SM-4 T-X RDT&E program will result in the fabrication of three (3) Super Machete Prototype Air Vehicles (PAVs) of each series model (SM-47S & SM-47T), which will undergo over 1,000 hours of flight testing. Conclusion of the flight test program will result in FAA FAR 25 type and production certification as well as applicable MIL SPEC qualification.

    LRIP consists of a one to two year gradual ramp-up of production, focused upon the manufacture of ten (10) to twenty (20) Super Machete production aircraft. All aircraft produced during LRIP are considered Production Articles. The first two (2) to six (6) Super Machetes produced in LRIP will likely remain in possession of Stavatti to serve as company demonstrators. The remaining Super Machetes produced during LRIP will be delivered to satisfy customer orders. Due to security restrictions, Stavatti does not openly publish the current backlog for Super Machete orders. Stavatti will begin satisfying this backlog through LRIP.

    Stavatti anticipates initial Super Machete models to enter Full-Rate Production (FRP) from 2022 through 2042 and beyond. Full-Rate Production will result in the production of between 25 and 75 SM-47 T-X  aircraft annually, with an anticipated SM-47 T-X delivery lead time of 12 months. All SM-47 production availability schedules are subject to change.

    PURCHASE

    SM-47 T-X Super Machete aircraft are marketed and sold directly by Stavatti Aerospace Ltd. to the end user as a Direct Commercial Sale (DCS) with exception of specific systems which require a Foreign Military Sales (FMS) component including, but not limited to: IFF and COMSEC/TEMPEST related systems and equipment. Furthermore, all Global Positioning Systems (GPS) receivers incorporating a PPS (Y) Interface must be approved for export through the Joint GPS Program Office.

    Stavatti reserves the right to market and sell the SM-47 T-X through the U.S. FMS program for purposes of assisting customers who desire the procurement of major weapon systems with military credits or direct program/operational support from the U.S. DoD.

    To simplify the procurement process, Stavatti prefers to structure SM-47 T-X procurement contracts as Fixed Cost Contracts (FCC). Customers may elect to procure SM-47 T-X SWSC aircraft or SM-47 T-Xs configured for customized end user requirements. In the event customers wish to procure SM-47 T-X SWSC aircraft, there is a distinct possibility that aircraft may be procured from existing Stavatti inventory, thereby significantly reducing delivery lead-time.

    If customers desire an SM-47 T-X of custom configuration, the procurement lead-time may increase from 6 to 12 months due to the lead-times associated with the procurement of specific aircraft systems including powerplant, avionics, displays and armament. It is for this reason that the Standard Lead Time for the procurement of SM-47 T-X aircraft is estimated at 12 months from date of contract signing.

    Stavatti does not employ a standard SM-47 T-X series FMS procurement process. All SM-47 T-X procurement performed under FMS must be coordinated on a case-by-case basis. Stavatti’s standard SM-47 DCS procurement process for all SM-47 T-X aircraft is as follows:

    1) Customer provides Stavatti with a Letter of Intent (LOI). An LOI is a statement indicating that the customer (client nation) intends to enter into a binding contract for the procurement of a specified number of SM-47 T-X aircraft. The LOI must include information relating to the number, model and configuration which the customer wishes to procure, the address of the procurement body, a signature of a qualified purchasing representative of the procurement body and the address of the delivery destination of the SM-47 aircraft.

    2) Stavatti will submit forms DSP-5 or DSP-73 or DSP-85 as appropriate to the State Department-Directorate of Defense Trade Controls (DDTC) to obtain the necessary export licenses associated with the SM-47 T-X procurement by the specific customer/client nation. Export licenses are not required for domestic sales to the US DoD/government user agencies. Once an approved export license is received by Stavatti, the customer and Stavatti may proceed with contract draft and signing.

    3) Customer and Stavatti draft and enter into/sign a SM-47 T-X Super Machete Procurement Contract (PC). The PC will specify the precise configuration of the SM-47 T-X aircraft to be procured including powerplant, avionics, instrumentation, escape systems, armament, APU, armor plating, sensors, EW suite, tires, paint scheme and livery, warranty, associated support equipment, etc. Delivery destination, anticipated delivery date and total contact value will be specified, as well as all other information necessary to produce and deliver the contracted SM-47 T-X aircraft to the customer in their desired configuration. The Customer must ensure the PC is accompanied by a Contract Initiation Payment (CIP) valued at ONE THIRD (1/3 or 33.3%) of the Total Contract Value to be paid to Stavatti.

    4) Stavatti completes the production of SM-47 T-X Super Machete aircraft to the “Green” or Un-Painted/Pre-Final Integration stage. Prior to “Painting” and completing final integration of aircraft armament, sensor, avionic and EW systems, the Customer is required to provide a Green Aircraft Payment (GAP) valued at ONE THIRD (1/3 or 33.3%) of the Total Contract Value to be paid to Stavatti. Once the GAP is received by Stavatti, “Green” aircraft enter the painting/ final integration phase.

    5) Stavatti completes and delivers the SM-47 T-X aircraft as specified in the PC. Upon delivery (or upon completion in the event the Customer receives/takes possession of the completed aircraft directed at the factory) of the procured SM-47 aircraft to the customer, the balance of the total contract value, equal to the remaining ONE THIRD (1/3 or 33.3%) of the Total Contract Value, must be paid to Stavatti.

    Stavatti will receive payment for domestic SM-47 T-X sales by wire transfer of funds, certified check, United States Dollars/Federal Reserve Notes (USD/FeRNs), gold or alternate precious Platinum Group Metal (PGM). Stavatti will receive payment for foreign export SM-47 T-X sales by wire transfer of funds, United States Dollars/Federal Reserve Notes (USD/FeRNs), gold or alternate precious Platinum Group Metal (PGM).

    EXPORT

    In compliance with the Arms Export Controls Act (AECA) and the International Traffic in Arms Regulations (ITAR: CFR 120-130), Stavatti restricts the marketing and sale of the SM-47 T-X air weapon system to qualified U.S. and NATO allied air defense arms. In support of current U.S. Arms Embargoes as issued by the U.S. State Department, Stavatti will not export SM-47 T-X aircraft to any of the following nations:

    Belarus, Burma, Central African Republic, People’s Republic of China, Cuba, Democratic Republic of the Congo, Eritrea, Haiti, Iran, Kyrgystan, Lebanon, Libya, North Korea, Somalia, Sudan, Syria, Venezuela, Zimbabwe

    Stavatti recognizes that the status of State Department Arms Embargoes is in constant flux with nations being added or removed from the Arms Embargo List from time to time. Stavatti therefore encourages parties and potential customers interested in procuring SM-47 T-X series aircraft to visit the State Department-Directorate of Defense Trade Controls (DDTC) Website at: https://www.pmdtc.org/ for a current State Department Embargo Reference List.

    Prior to marketing the SM-47 T-X series to any potential customer nation, Stavatti contacts DDTC to receive “Prior Approval To Market.” Once prior approval is received, Stavatti initiates a comprehensive marketing program which consists of information and support material which is unavailable to the Public Domain. Prior to issuance of a production contract or purchase order, Stavatti submits an export license application (DSP-5, DSP-61, DSP-73, etc.) for the purpose of obtaining an export license in support of the anticipated contract or purchase order. The export license application must be accompanied by attachments, some of which must be completed in-whole or in-part by the potential customer/procurement body. Furthermore, a Letter of Intent (LOI) or similar official document including a Procurement Contract must be issued by the intended procurement body to serve as an attachment to accompany the export license application for review by the State Department-DDTC in support of the SM-47 T-X series export licensing process.

    Stavatti is a State Department-DDTC registered manufacturer and exporter or U.S. Munitions List (USML) Category I, II, III, IV, VIII (Aircraft), X as well as additional items. Copies of expired, prior year State Department-DDTC Registration Letters are available for review on the Stavati Licenses webpage. Current Registration Letters received from DDTC are not posted online for security purposes.

    WARRANTY

    Stavatti will assign each SM-47 T-X aircraft with a 2,000 hour, Nose-to-Nozzle, Manufacturer’s Limited Warranty. Stavatti expressly warrants each new SM-47 Super Machete aircraft (exclusive of powerplant and powerplant accessories as supplied by GEAE which are covered under GEAE warranties), including factory installed avionics, armament, electronic countermeasures and additional factory installed equipment, both standard to the type and optional, to be free from defects in material and workmanship under normal use and service for a period of 2,000 flight hours beginning upon delivery of the SM-47 T-X aircraft to the initial end user.

    Stavatti‘s obligation under this warranty will be limited to repairing or replacing, at its sole option, any component or components which within the applicable warranty period are identified by the owner/operator. The repair or replacement of defective components under this warranty will be made by or through any Stavatti or Stavatti approved SM-47 T-X service facility without assessment of fee or cost to the warranty holder for components or labor for removal, installation and/or repair. All import duties, sales taxes and use taxes, if any, on such warranty repairs or replacement components are the sole responsibility of the warranty recipient.

    The warranty will apply to any SM-47 T-X aircraft, avionics and fixed aircraft equipment as integrated by Stavatti under production contract by the end user which has been flown, maintained and operated in accordance with Stavatti and other applicable manuals, bulletins, airworthiness directives and other written instructions. The warranty, however, will not apply to SM-47 T-X aircraft, avionics and fixed aircraft equipment as integrated by Stavatti under production contract by the end user which have been subject to misuse, abuse, negligence, accident or battle damage; or which have been altered other than by Stavatti, or contrary to applicable manuals, bulletins, and other written instructions provided by Stavatti, in any way that, in the sole judgement of Stavatti, adversely affects their performance, stability or reliability; or to normal maintenance services (such as powerplant adjustments, cleaning, control rigging, brake and other mechanical adjustments and maintenance inspections); or to the replacement of service items (such as brake linings, filters); or to normal deterioration of appurtenances (such as paint and livery) due to wear.

    Each SM-47 T-X procurement contract will incorporate a complete description of all aspects associated with the 2,000 hour `Nose-to-Nozzle’ manufacturers limited warranty. Customers will be able to extend their warranties in 500 hour blocks beyond 2,000 hours for a nominal fee.

    LEASING

    SM-47 T-X aircraft will be made available for lease with customer approved credit directly from Stavatti. Stavatti lease programs are subject to U.S. State Department-Office of Defense Trade Controls Approval and may be conducted as DCS or FMS lease programs. FMS lease programs are coordinated through an appropriate U.S. DoD user agency and will generally consist of SM-47 T-X aircraft owned by the U.S. DoD which are then leased, through a DoD negotiated lease agreement, to the end user. FMS lease programs are outside Stavatti’s sphere of influence and parties interested in leasing SM-47 T-X  aircraft through FMS are urged to contact the U.S. DoD.

    Stavatti DCS leases will involve the lease of Stavatti owned aircraft to the end user. DCS lease terms and arrangements must be negotiated on a case-by-case basis and are dependent upon the type and number of SM-47 T-X aircraft leased and the qualifications of the nation/air arm leasing the SM-47 T-X aircraft. Typically SM-47 T-X SWSC aircraft will be available for 36, 60 and 120 month leases.

    All Stavatti lease customers are subject to pre approval requirements. Additional requirements will also apply to qualify for the SM-47 T-X lease program. All lease customers will be required to maintain current Hull and Liability insurance from a qualified aerospace insurance provider throughout the duration of the lease. All leased SM-47 T-X aircraft must be operated by a qualified, SM-47 T-X Type Certified pilot with a current U.S. First Class Medical or equivalent medical certification and no less than 1,500 hours high performance aircraft experience. In the event lease customers are unable to provide a qualified pilot, Stavatti will provide contract pilot services at a negotiated contract cost. A Stavatti lease maintenance agreement will be implemented in conjunction with the standard 2,000 hour ‘Nose-to-Nozzle’ Limited Manufacturer’s Warranty. The lease customer will be responsible for the costs associated with maintenance and repairs on the SM-47 T-X aircraft hull and systems resulting from the combat environment during the time of lease. In the event an SM-47 T-X aircraft is destroyed and/or damaged to such an extent that the aircraft is considered a total loss, during either peace or war, the lease customer will responsible for the remainder of the lease owed due, plus the purchase price of the aircraft at lease end.

    Additional requirements, limitations and restrictions will apply. Contact Stavatti for more information regarding the leasing of SM-47 T-X aircraft.

    LICENSING & LICENSED PRODUCTION

    SM-47 T-X aircraft will be available for licensed production in qualified facilities worldwide. Licensing of SM-47 T-X production is subject to U.S. State Department-Directorate of Defense Trade Controls Approval. Stavatti is responsible for coordinating and negotiating all SM-47 T-X licensing worldwide.

    Stavatti will permit the production licensing of all SM-47 T-X series models in its entirety, in kit form or, alternatively, industry teaming for the production of SM-47 T-X aircraft in-part or in component form. Licensing arrangements must be considered on a case-by-case basis. Generally, Stavatti assumes license production involves the production of entire SM-47 T-X aircraft from an indigenous producer within a customer nation. To produce the SM-47 T-X under license a customer must first exhibit possession of a qualified, appropriate aircraft production facility capable of producing the SM-47 T-Xaircraft to the degree desired (i.e. in whole or in part) as well as qualified engineers and assembly personnel to support the production process. Customers must then pay an initial licensing fee, as well as annual licensing maintenance fees and a royalty on aircraft produced/sold.

    Qualified Customers who produce the SM-47 T-X under license will receive significant technical and production support from Stavatti, including access to both Stavatti’s U.S. domesticSM-47 T-X production facility as well as complete familiarization with SM-47 T-X prototypes, production vehicles and demonstrators.

    In the event a nation desires to produce the SM-47 T-X under license, but lacks the facilities and equipment to do so, Stavatti can provide total support and assistance with regard to the organization and creation of a suitable production facility.

    OFFSET

    To address the issue of global fiscal responsibility with regard to necessary defense spending, Stavatti offers numerous Offset opportunities associated with SM-47 T-X procurement.

    The standard cost offset associated with SM-47 T-X procurement is the licensed production of SM-47 T-X subsystems and components in the customer nation. Stavatti maintains industry partners worldwide and desires to expand major airframe component/assembly production into your region of the world.

    Barter is an offset opportunity which Stavatti will willingly consider. Oil, minerals, and additional goods may serve as suitable barter toward the procurement of SM-47 T-X aircraft. Additionally, Stavatti will take trade-ins from existing nation fighter/trainer/ transport aircraft fleets, serving to reduce overall aircraft procurement costs.